If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-19m+16m=0
We add all the numbers together, and all the variables
3m^2-3m=0
a = 3; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·3·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*3}=\frac{0}{6} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*3}=\frac{6}{6} =1 $
| 30=3+r | | 95=10m+15 | | 3x+26=3 | | 8x-3=3x+15 | | 3+i/2.4=-4 | | .)p-3=10 | | π*x^2*11=486 | | C^2-10c=c | | x(1852+25)=2927 | | 2^-5x+13=35 | | 7y-17=46 | | w-(-6)=-2 | | 2(x−6)=x-14 | | 1/3c+4=5 | | 80+114+12x+8+13x+8=360 | | 2(^10-2x)=64 | | 42+5t= | | 4x-2-X=-5 | | -1/3(x+3)^2=12 | | 4x(x-6)=2x+16 | | x=17-7+19 | | 6.5^(2x)-4.8^(x)=0 | | 2(x+3)=3x−2 | | 25x+20x=200 | | 1z^2+4z=0 | | 4c-26=3c | | 4z+1z^2=0 | | 1.1x=12.2 | | y′=1+y^2 | | 7(5w-3)=84 | | 2x+3x+2=180 | | 4z+z^2=0 |